% Quokka3 example settingsfile for a Cox and Strack resistance structure with an MIS contact % (c) 2019 Andreas Fell % % simulates the JV-curve of a circular front MIS contact and full area rear ohmic contact % uses a quarter symmetry, meaning that the resulting resistance needs to be quartered for comparing with measured values Syntax = 'generic'; Domain.DeviceType = 'ohmic device'; Domain.Dimensions = 3; Domain.Wx = 3e3; % 3 mm domain, should be large enough for representing an infinite domain Domain.Wy = 3e3; Domain.Wz = 200; % wafer thickness Solver.SolutionType = 'dark JV-curve'; Solver.JVCurve.VtermStepSize = 'user'; Solver.JVCurve.VtermUserSteps = lin[-0.1,0.4,30]; Solver.Electrical.MetalModelType = 'constant-potential'; % disregard lateral current within metal Solver.ExternalCircuit.Enable = 0; Solver.Sweep.Enable = 0; % set to 1 to enable sweeping of contact diameter and temperature defined below Sweep.NGroups = 2; Sweep.GroupA(1).Parameter = 'SkinFeature(2).Geometry.SizeX'; Sweep.GroupA(1).Values = [100 200 400 800]; Sweep.GroupA(2).Parameter = 'ContactFeature(1).Geometry.SizeX'; Sweep.GroupA(2).Values = [100 200 400 800]; Sweep.GroupA(3).Parameter = 'MetalFeature(1).Geometry.SizeX'; Sweep.GroupA(3).Values = [100 200 400 800]; Sweep.GroupB(1).Parameter = 'Thermal.T'; Sweep.GroupB(1).Values = [200 250 300]; Thermal.T = 300; Bulk.Mesh.Quality = 'standard'; % at least 'standard' to resolve the circle, grid-independency should be checked! Bulk.Electrical.BackgroundDoping.SettingType = 'NA-ND'; Bulk.Electrical.BackgroundDoping.NA = 1; Bulk.Electrical.BackgroundDoping.ND = 1e16; SkinFeature(1).Name = 'front full area skin'; % passivated, undiffused front without lateral conductivity SkinFeature(1).Geometry.Plane = 'front'; SkinFeature(1).Geometry.Shape = 'full'; SkinFeature(1).Lumped.Electrical.RsheetEnable = 0; SkinFeature(2).Name = 'front contact skin'; % a contacted skin is required to be conductive in Quokka3 SkinFeature(2).Geometry.Plane = 'front'; SkinFeature(2).Geometry.Shape = 'circle'; SkinFeature(2).Geometry.PositionX = 0; SkinFeature(2).Geometry.PositionY = 0; SkinFeature(2).Geometry.SizeX = 400; % diameter SkinFeature(2).Lumped.Electrical.RsheetEnable = 1; SkinFeature(2).Lumped.Electrical.Rsheet = 100; % sheet resistance could matter due to current-transfer effects SkinFeature(3).Name = 'rear full area skin'; SkinFeature(3).Geometry.Plane = 'rear'; SkinFeature(3).Geometry.Shape = 'full'; SkinFeature(3).Lumped.Electrical.RsheetEnable = 1; % needs to have a sheet resistance as fully contacted SkinFeature(3).Lumped.Electrical.Rsheet = 1; % value doesn't matter as there are no significant current-transfer effects on the full-area rear contact ContactFeature(1).Name = 'front contact'; ContactFeature(1).Geometry.Plane = 'front'; ContactFeature(1).Geometry.Shape = 'circle'; ContactFeature(1).Geometry.PositionX = 0; ContactFeature(1).Geometry.PositionY = 0; ContactFeature(1).Geometry.SizeX = 400; % diameter ContactFeature(1).Type = 'MIS_simple'; ContactFeature(1).SchottkyBarrier = 0.17; ContactFeature(1).TunnelBarrier = 3.2; ContactFeature(1).TunnelThickness = 2.1; ContactFeature(1).EffectiveMass = 0.27; ContactFeature(1).OhmicResistivity = 20; ContactFeature(2).Name = 'rear contact'; ContactFeature(2).Geometry.Plane = 'rear'; ContactFeature(2).Geometry.Shape = 'full'; ContactFeature(2).OhmicResistivity = 1e-6; % shouldn't matter much because of large area MetalFeature(1).Name = 'front metal'; MetalFeature(1).Geometry.Plane = 'front'; MetalFeature(1).Geometry.Shape = 'circle'; MetalFeature(1).Geometry.PositionX = 0; MetalFeature(1).Geometry.PositionY = 0; MetalFeature(1).Geometry.SizeX = 400; % diameter MetalFeature(1).Electrical.Polarity = 'n-type'; % doesn't matter which polarity MetalFeature(2).Name = 'rear contact'; MetalFeature(2).Geometry.Plane = 'rear'; MetalFeature(2).Geometry.Shape = 'full'; MetalFeature(2).Electrical.Polarity = 'p-type'; % must be opposite to front metal