% Quokka3 example settingsfile for a circular TLM structure % (c) 2019 Andreas Fell % % shows how to use probes to sense surface potential in order to accurately simulate a 4PP measurement % the 4 probes are placed in a line with a distance of 500µm each (~ fixed 4PP head) Syntax = 'generic'; Domain.DeviceType = 'ohmic device'; Domain.Dimensions = 3; Domain.Wx = 4e3; Domain.Wy = 4e3; Domain.Wz = 200; % wafer thickness Solver.SolutionType = 'Resistance'; Solver.Electrical.MetalModelType = 'finite-differences'; % 'finite-differences' required to account for current pins, otherwise for 'constant-potential' there is no potential drop within metal features Solver.ExternalCircuit.Enable = 0; Solver.Sweep.Enable = 1; % Sweep.NGroups = 2; Sweep.GroupA(1).Parameter = 'ContactFeature(2).Geometry.SizeX'; Sweep.GroupA(1).Values = [1200:100:1700]; Sweep.GroupA(2).Parameter = 'MetalFeature(2).Geometry.SizeX'; Sweep.GroupA(2).Values = [1200:100:1700]; Sweep.GroupB(1).Parameter = 'ContactFeature(1).OhmicResistivity'; Sweep.GroupB(1).Values = [1e-4 1e-3 1e-2]; Sweep.GroupB(2).Parameter = 'ContactFeature(2).OhmicResistivity'; Sweep.GroupB(2).Values = [1e-4 1e-3 1e-2]; Bulk.Mesh.Quality = 'standard'; % at least 'standard' to resolve the circle, grid-independency should be checked! Bulk.Electrical.BackgroundDoping.Resistivity = 2; % set very high to not consider current transport through the bulk (e.g. due to a pn-junction being present at the front) SkinFeature(1).Name = 'full area skin'; % front skin, e.g. an emitter diffusion SkinFeature(1).Geometry.Plane = 'front'; SkinFeature(1).Geometry.Shape = 'full'; SkinFeature(1).Lumped.Electrical.RsheetEnable = 1; SkinFeature(1).Lumped.Electrical.Rsheet = 100; ContactFeature(1).Name = 'outer contact'; ContactFeature(1).Geometry.Plane = 'front'; ContactFeature(1).Geometry.Shape = 'circle'; ContactFeature(1).Geometry.Inverse = 1; % defines a contact everywhere except of this circle ContactFeature(1).Geometry.PositionX = 2e3; ContactFeature(1).Geometry.PositionY = 2e3; ContactFeature(1).Geometry.SizeX = 1800; % outer circle diameter ContactFeature(1).OhmicResistivity = 3e-3; % this is the contact resistivity of interest ContactFeature(2).Name = 'inner contact'; ContactFeature(2).Geometry.Plane = 'front'; ContactFeature(2).Geometry.Shape = 'circle'; ContactFeature(2).Geometry.PositionX = 2e3; ContactFeature(2).Geometry.PositionY = 2e3; ContactFeature(2).Geometry.SizeX = 1200; % inner circle diameter ContactFeature(2).OhmicResistivity = 3e-3; % this is the contact resistivity of interest MetalFeature(1).Name = 'outer metal'; MetalFeature(1).Geometry.Plane = 'front'; MetalFeature(1).Geometry.Shape = 'circle'; MetalFeature(1).Geometry.Inverse = 1; MetalFeature(1).Geometry.PositionX = 2e3; MetalFeature(1).Geometry.PositionY = 2e3; MetalFeature(1).Geometry.SizeX = 1800; % diameter MetalFeature(1).Electrical.Polarity = 'n-type'; % this defines the potential applied to this metal feature ('n-type' = 1V), must only be given for 'constant-potential' metal model type MetalFeature(1).Electrical.Rsheet = 1; % only required for 'finite-differences' metal model type MetalFeature(2).Name = 'inner metal'; MetalFeature(2).Geometry.Plane = 'front'; MetalFeature(2).Geometry.Shape = 'circle'; MetalFeature(2).Geometry.PositionX = 2e3; MetalFeature(2).Geometry.PositionY = 2e3; MetalFeature(2).Geometry.SizeX = 1200; % diameter MetalFeature(2).Electrical.Polarity = 'p-type'; % this defines the potential applied to this metal feature ('p-type' = 0V), must only be given for 'constant-potential' metal model type MetalFeature(2).Electrical.Rsheet = 1; % only required for 'finite-differences' metal model type PadFeature(1).Name = 'current pin 1'; % pin in the center PadFeature(1).Geometry.Plane = 'front'; PadFeature(1).Geometry.Shape = 'rectangle'; PadFeature(1).Geometry.PositionX = 2e3; PadFeature(1).Geometry.PositionY = 2e3; PadFeature(1).Geometry.SizeX = 30; PadFeature(1).Geometry.SizeY = 30; PadFeature(1).Electrical.Polarity = 'n-type'; % 1V PadFeature(1).Electrical.ContactResistivity = 1e-5; % negligible low, but do not set it to 0! PadFeature(2).Name = 'current pin 2'; % pin on the outer metal PadFeature(2).Geometry.Plane = 'front'; PadFeature(2).Geometry.Shape = 'rectangle'; PadFeature(2).Geometry.PositionX = 3.5e3; PadFeature(2).Geometry.PositionY = 2e3; PadFeature(2).Geometry.SizeX = 30; PadFeature(2).Geometry.SizeY = 30; PadFeature(2).Electrical.Polarity = 'p-type'; % 0V PadFeature(2).Electrical.ContactResistivity = 1e-5; % contact resistivity between metal and pin Probe(1).Name = 'voltage pin 1'; % voltage pin 500µm right of current pin 1 Probe(1).Plane = 'front'; Probe(1).PositionX = 2.5e3; Probe(1).PositionY = 2e3; Probe(2).Name = 'voltage pin 2'; % voltage pin 1000µm right of current pin 1 Probe(2).Plane = 'front'; Probe(2).PositionX = 3e3; Probe(2).PositionY = 2e3;