% example Quokka3 settingsfile % rear passivated skin: Al2O3+SiNx stack on p-type silicon % Passivation parameters from L. Black et al., "Modeling Recombination at the Si–Al O Interface", 2013, IEEE JPV % % (c) 2017 Andreas Fell % % uses the simplified 'near-surface skin' syntax % % by sweeping the bulk-side fermi-level split (i.e. the voltage) a substantial injection-dependence of the effective recombination can be observed % % note that the results differ significantly from the poublished ones; % this is due to uncertainties / differences in material property models right at the surface where carrier densities become very large % because of the large surface charge (e.g. BGN model, nieff, ...). SaveSpatial = 1; Syntax = 'near-surface skin'; Solver.SolutionType = 'skin single-point'; Solver.Skin.QFPsplit = 0.6; Solver.Skin.Jterm = 0; Solver.Illumination.Enable = 0; Solver.Sweep.Enable = 1; Sweep.NGroups = 1; Sweep.GroupA(1).Parameter = 'Solver.Skin.QFPsplit'; Sweep.GroupA(1).Values = [0.3:0.05:0.75]; Mesh.Quality = 'standard'; Thermal.T = 298.15; Material.Si.BGNModel = 'Si-Schenk1998_LI'; % including / excluding injection-dependent BGN largely changes the resulting J0,skin! BackgroundDoping.SettingType = 'dopingtype-resistivity'; BackgroundDoping.DopingType = 'p-type'; BackgroundDoping.Resistivity = 200; Recombination.Type = 'intrinsic plus SRH'; Recombination.SRH(1).Type = 'tau-Et'; Recombination.SRH(1).taun = 371; Recombination.SRH(1).taup = 3710; Recombination.SRH(1).Et_Ei = 0; DopingProfile.Type = 'off'; Surface.RecombinationModel = 'S'; Surface.Sn = 1.08e4; Surface.Sp = 78; Surface.Et_Ei = 0; Surface.Charge = -3e12; Contact.Enable = 0;